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Key concepts

• we are not interested in random functions
• we want to condition on the training data
• when both prior and likelihood are Gaussian, then

• posterior is a Gaussian process
• predictive distributions are Gaussian

• pictorial representation of prior and posterior
• interpretation of predictive equations
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Gaussian Process Inference

Recall Bayesian inference in a parametric model.

The posterior is proportional to the prior times the likelihood.

The predictive distribution is the predictions marginalized over the parameters.

How does this work in a Gaussian Process model?

Answer: in our non-parametric model, the “parameters” are the function itself!
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Non-parametric Gaussian process models

In our non-parametric model, the “parameters” are the function itself!
Gaussian likelihood, with noise variance σ2

noise

p(y|x, f,Mi) ∼ N(f, σ2
noiseI),

Gaussian process prior with zero mean and covariance function k

p(f|Mi) ∼ GP(m ≡ 0, k),

Leads to a Gaussian process posterior

p(f|x, y,Mi) ∼ GP(mpost, kpost),

where
{
mpost(x) = k(x, x)[K(x, x) + σ2

noiseI]
−1y,

kpost(x, x ′) = k(x, x ′) − k(x, x)[K(x, x) + σ2
noiseI]

−1k(x, x ′),

And a Gaussian predictive distribution:

p(y∗|x∗, x, y,Mi) ∼ N
(
k(x∗, x)>[K+ σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K+ σ2

noiseI]
−1k(x∗, x)

)
.
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Prior and Posterior
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Predictive distribution:

p(y∗|x∗, x, y) ∼ N
(
k(x∗, x)>[K+ σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K+ σ2

noiseI]
−1k(x∗, x)

)
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Some interpretation

Recall our main result:

f∗|x∗, x, y ∼ N
(
K(x∗, x)[K(x, x) + σ2

noiseI]
−1y,

K(x∗, x∗) − K(x∗, x)[K(x, x) + σ2
noiseI]

−1K(x, x∗)
)
.

The mean is linear in two ways:

µ(x∗) = k(x∗, x)[K(x, x) + σ2
noiseI]

−1y =

N∑
n=1

βnyn =

N∑
n=1

αnk(x∗, xn).

The last form is most commonly encountered in the kernel literature.
The variance is the difference between two terms:

V(x∗) = k(x∗, x∗) − k(x∗, x)[K(x, x) + σ2
noiseI]

−1k(x, x∗),

the first term is the prior variance, from which we subtract a (positive) term,
telling how much the data x has explained.
Note, that the variance is independent of the observed outputs y.
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